1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define arrlen(x) (sizeof(x)/sizeof((x)[0]))
#define max(a, b) ((a) > (b) ? (a) : (b))
enum MATERIAL {
ORE,
CLAY,
BSDN,
GEOD,
};
struct blueprint {
int id;
int ore_ore;
int clay_ore;
int bsdn_ore;
int bsdn_clay;
int geod_ore;
int geod_bsdn;
int max_ore;
int max_clay;
int max_bsdn;
};
void
blueprint_ctor(struct blueprint * b, int id, int ore_ore, int clay_ore,
int bsdn_ore, int bsdn_clay, int geod_ore, int geod_bsdn)
{
b->id = id;
b->ore_ore = ore_ore;
b->clay_ore = clay_ore;
b->bsdn_ore = bsdn_ore;
b->bsdn_clay = bsdn_clay;
b->geod_ore = geod_ore;
b->geod_bsdn = geod_bsdn;
b->max_ore = max(max(b->ore_ore, b->clay_ore), max(b->bsdn_ore, b->geod_ore));
b->max_clay = b->bsdn_clay;
b->max_bsdn = b->geod_bsdn;
}
struct material {
int amount;
int robots;
};
void
material_ctor(struct material * m, int amount, int robots)
{
m->amount = amount;
m->robots = robots;
}
// Tick a material.
//
// Amount increases by the number of robots
// Number of robots increases by number of pending robots
void
material_tick(struct material * m, int build)
{
m->amount += m->robots;
if (build)
++m->robots;
}
struct inventory {
struct material ore;
struct material clay;
struct material bsdn;
struct material geod;
enum MATERIAL pending;
};
void
inventory_init(struct inventory * i)
{
material_ctor(&i->ore, 0, 1);
material_ctor(&i->clay, 0, 0);
material_ctor(&i->bsdn, 0, 0);
material_ctor(&i->geod, 0, 0);
i->pending = -1;
}
int
inventory_cmp(struct inventory const * a, struct inventory const * b)
{
if (a->geod.amount != b->geod.amount)
return a->geod.amount - b->geod.amount;
if (a->geod.robots != b->geod.robots)
return a->geod.robots - b->geod.robots;
if (a->bsdn.amount != b->bsdn.amount)
return a->bsdn.amount - b->bsdn.amount;
if (a->bsdn.robots != b->bsdn.robots)
return a->bsdn.robots - b->bsdn.robots;
if (a->clay.amount != b->clay.amount)
return a->clay.amount - b->clay.amount;
if (a->clay.robots != b->clay.robots)
return a->clay.robots - b->clay.robots;
if (a->ore.amount != b->ore.amount)
return a->ore.amount - b->ore.amount;
return a->ore.robots - b->ore.robots;
}
void
inventory_tick(struct inventory * i)
{
material_tick(&i->ore, i->pending == ORE);
material_tick(&i->clay, i->pending == CLAY);
material_tick(&i->bsdn, i->pending == BSDN);
material_tick(&i->geod, i->pending == GEOD);
i->pending = -1;
}
// Try to build a robot out of material #m
int
inventory_build(struct inventory * i, struct blueprint const * b, enum MATERIAL m)
{
switch (m) {
case ORE:
if (i->pending != -1
|| i->ore.amount < b->ore_ore)
return -1;
i->ore.amount -= b->ore_ore;
i->pending = ORE;
break;
case CLAY:
if (i->pending != -1
|| i->ore.amount < b->clay_ore)
return -1;
i->ore.amount -= b->clay_ore;
i->pending = CLAY;
break;
case BSDN:
if (i->pending != -1
|| i->ore.amount < b->bsdn_ore
|| i->clay.amount < b->bsdn_clay)
return -1;
i->ore.amount -= b->bsdn_ore;
i->clay.amount -= b->bsdn_clay;
i->pending = BSDN;
break;
case GEOD:
if (i->pending != -1
|| i->ore.amount < b->geod_ore
|| i->bsdn.amount < b->geod_bsdn)
return -1;
i->ore.amount -= b->geod_ore;
i->bsdn.amount -= b->geod_bsdn;
i->pending = GEOD;
break;
default:
return -1;
}
return 0;
}
// Most basic build algorithm. Build as many of the most important things that you
// can, and then as many of the next most important, and so on.
//
// Not optimal. But it helps get the structure of the program working.
void
inventory_build_basic(struct inventory * i, struct blueprint const * b, int remaining)
{
int t;
for (t = 0; t < remaining; ++t) {
while (inventory_build(i, b, GEOD) == 0)
;
while (inventory_build(i, b, BSDN) == 0)
;
while (inventory_build(i, b, CLAY) == 0)
;
while (inventory_build(i, b, ORE) == 0)
;
inventory_tick(i);
fprintf(stderr, "Blueprint %d tick %d, ore: %d/%d, clay %d/%d, bsdn %d/%d, geod %d/%d\n",
b->id, t + 1,
i->ore.amount, i->ore.robots,
i->clay.amount, i->clay.robots,
i->bsdn.amount, i->bsdn.robots,
i->geod.amount, i->geod.robots);
}
}
long exhaustive_iter;
// Exhastive(ish) build strategy
//
// Try all^Wmost combinations of building different robots at different times
//
// We actually cheat and only try building on certain conditions:
//
// if (i->MATERIAL.robots < b->max_MATERIAL)
//
// max_MATERIAL is the maximum amount of MATERIAL it takes to build
// any robot. Given that we can only build one robot per round, we
// can never spend more than max_MATERIAL units per round, so we
// never need more than max_MATERIAL robots of that type.
//
// if (i->MATERIAL.amount < 2 * b->max_MATERIAL)
//
// If we already have a lot of MATERIAL, we probably don't need
// another robot to collect that type right now.
//
// if (i->MATERIAL.amount < 2 * b->ROBOT_MATERIAL)
//
// If we could have built a robot of a certain type some time ago,
// but didn't, then either a) this is a good build combination and
// we don't need it, or b) this is a bad build combination and we
// did, but there isn't much point in going further down that
// rabbit hole now.
void
inventory_build_exhaustive(struct inventory * i, struct blueprint const * b, int remaining)
{
struct inventory best, test;
if (!remaining)
// No time to do anything!
return;
++exhaustive_iter;
best = *i;
test = *i;
// If there are some robots we can't build yet, try doing nothing this round.
if (i->ore.amount < b->max_ore
|| i->clay.amount < b->max_clay
|| i->bsdn.amount < b->max_bsdn)
{
inventory_tick(&test);
// fprintf(stderr, "%d: doing nothing\n", remaining);
inventory_build_exhaustive(&test, b, remaining - 1);
if (inventory_cmp(&test, &best) > 0)
best = test;
test = *i;
}
// Try building a geode robot, and check if that's better than doing nothing.
if (inventory_build(&test, b, GEOD) == 0) {
// fprintf(stderr, "%d: building a geod robot (%ld)\n", remaining, test.geod.amount);
inventory_tick(&test);
inventory_build_exhaustive(&test, b, remaining - 1);
if (inventory_cmp(&test, &best) > 0)
best = test;
test = *i;
}
// Try building a obsidian robot, and checking if that's better than anything else
if (i->bsdn.robots < b->max_bsdn
&& i->bsdn.amount < 2 * b->max_bsdn
&& (i->clay.amount < 2 * b->bsdn_clay
|| i->ore.amount < 2 * b->bsdn_ore)
&& inventory_build(&test, b, BSDN) == 0)
{
// fprintf(stderr, "%d: building a bsdn robot (%ld)\n", remaining, test.bsdn.amount);
inventory_tick(&test);
inventory_build_exhaustive(&test, b, remaining - 1);
if (inventory_cmp(&test, &best) > 0)
best = test;
test = *i;
}
// Try building a clay robot, and checking if that's better than anything else
if (i->clay.robots < b->max_clay
&& i->clay.amount < 2 * b->max_clay
&& i->ore.amount < 2 * b->clay_ore
&& remaining > 5
&& inventory_build(&test, b, CLAY) == 0)
{
// fprintf(stderr, "%d: building a clay robot (%ld)\n", remaining, test.clay.amount);
inventory_tick(&test);
inventory_build_exhaustive(&test, b, remaining - 1);
if (inventory_cmp(&test, &best) > 0)
best = test;
test = *i;
}
// Try building a ore robot, and checking if that's better than anything else
if (i->ore.robots < b->max_ore
&& i->ore.amount < 2 * b->max_ore
&& i->ore.amount < 2 * b->ore_ore
&& remaining > 10
&& inventory_build(&test, b, ORE) == 0)
{
// fprintf(stderr, "%d: building a ore robot (%ld)\n", remaining, test.ore.amount);
inventory_tick(&test);
inventory_build_exhaustive(&test, b, remaining - 1);
if (inventory_cmp(&test, &best) > 0)
best = test;
test = *i;
}
*i = best;
}
int
main(int argc, char ** argv)
{
int rounds = 24;
char const * build = "exhaustive", * output = "quality";
int quality = 0, i;
long product = 1;
regex_t reblueprint;
char buf[BUFSIZ];
while ((i = getopt(argc, argv, "p:b:o:r:")) != -1) {
switch (i) {
case 'p':
switch (atoi(optarg)) {
case 1:
rounds = 24;
output = "quality";
break;
case 2:
rounds = 32;
output = "product";
break;
default:
fprintf(stderr, "Unexpected puzzle part: %s\n", optarg);
return -1;
}
break;
case 'b':
build = optarg;
break;
case 'o':
output = optarg;
break;
case 'r':
rounds = atoi(optarg);
break;
default:
return -1;
}
}
if (regcomp(&reblueprint, "Blueprint ([[:digit:]]+):"
" Each ore robot costs ([[:digit:]]+) ore."
" Each clay robot costs ([[:digit:]]+) ore."
" Each obsidian robot costs ([[:digit:]]+) ore and ([[:digit:]]+) clay."
" Each geode robot costs ([[:digit:]]+) ore and ([[:digit:]]+) obsidian.",
REG_EXTENDED) != 0)
{
fprintf(stderr, "Bad regex\n");
return -1;
}
while (fgets(buf, sizeof(buf), stdin)) {
regmatch_t rematch[8];
struct blueprint b;
struct inventory i;
if (regexec(&reblueprint, buf, arrlen(rematch), rematch, 0) != 0) {
fprintf(stderr, "Unexpected blueprint in %s\n", buf);
continue;
}
blueprint_ctor(&b,
atoi(buf + rematch[1].rm_so),
atoi(buf + rematch[2].rm_so),
atoi(buf + rematch[3].rm_so),
atoi(buf + rematch[4].rm_so),
atoi(buf + rematch[5].rm_so),
atoi(buf + rematch[6].rm_so),
atoi(buf + rematch[7].rm_so));
inventory_init(&i);
if (strcmp(build, "basic") == 0) {
inventory_build_basic(&i, &b, rounds);
}
else if (strcmp(build, "exhaustive") == 0) {
exhaustive_iter = 0;
inventory_build_exhaustive(&i, &b, rounds);
#if 0
fprintf(stderr, "Blueprint %d, iterations %ld, ore %d/%d, clay %d/%d, bsdn %d/%d, geod %d/%d\n",
b.id, exhaustive_iter,
i.ore.amount, i.ore.robots,
i.clay.amount, i.clay.robots,
i.bsdn.amount, i.bsdn.robots,
i.geod.amount, i.geod.robots);
#endif
}
else {
fprintf(stderr, "Unknown build strategy: %s\n", build);
regfree(&reblueprint);
return -1;
}
quality += b.id * i.geod.amount;
product *= i.geod.amount;
#if 0
fprintf(stderr, "Blueprint %d geodes = %d\n", b.id, i.geod.amount);
#endif
}
if (strcmp(output, "quality") == 0) {
printf("Total quality level = %d\n", quality);
}
else if (strcmp(output, "product") == 0) {
printf("Total geode product = %ld\n", product);
}
else {
fprintf(stderr, "Unknown output type: %s\n", output);
regfree(&reblueprint);
return -1;
}
regfree(&reblueprint);
return 0;
}
|