1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define arrlen(x) (sizeof(x)/sizeof((x)[0]))
void *
qelem(void * base, size_t size, int i)
{
return (char *) base + i * size;
}
void
qswap(void * base, size_t size, int i, int j)
{
char tmp[size];
memcpy(tmp, qelem(base, size, i), size);
memcpy(qelem(base, size, i), qelem(base, size, j), size);
memcpy(qelem(base, size, j), tmp, size);
}
int
qpermute(void * base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *))
{
size_t pivot, next = 0, i, j;
if (nmemb < 2)
// No other permutations!
return 0;
if (nmemb == 2) {
if (compar(qelem(base, size, 0), qelem(base, size, 1)) >= 0)
return 0;
qswap(base, size, 0, 1);
return 1;
}
for (pivot = nmemb - 1; pivot > 0; --pivot)
if (compar(qelem(base, size, pivot - 1), qelem(base, size, pivot)) < 0)
break;
if (pivot == 0)
// In final permutation (anti-sorted) order. None more remain.
return 0;
--pivot;
// Find the next item to go in pivot's place, the right-most element
// larger than pivot
for (i = pivot + 1; i < nmemb; ++i)
if (compar(qelem(base, size, pivot), qelem(base, size, i)) < 0)
next = i;
if (!next)
return 0;
// Swap the pivot with its replacement
qswap(base, size, pivot, next);
// Reverse all the elements after the new pivot
for (i = pivot + 1, j = nmemb - 1; i < j; ++i, --j)
qswap(base, size, i, j);
return 1;
}
int
ptrcmp(void const * a, void const * b)
{
return *((void **) a) - *((void **) b);
}
int
ptrcmpr(void const * a, void const * b)
{
return *((void **) b) - *((void **) a);
}
struct valve {
char name[3];
int flow;
int ndests;
char * destnames;
struct valve ** dests;
};
int
valve_ctor(struct valve * v, char const * name, int flow, char const * dests)
{
int ndests;
if (strlen(name) != 2
|| (ndests = strlen(dests)) % 4 != 2)
return -1;
strcpy(v->name, name);
v->flow = flow;
v->ndests = (ndests + 2) / 4;
v->destnames = strdup(dests);
v->dests = calloc(ndests + 1, sizeof(struct valve *));
return 0;
}
void
valve_dtor(struct valve * v)
{
if (!v)
return;
free(v->destnames);
free(v->dests);
}
void
valve_setdests(struct valve * v, struct valve * others, int nothers)
{
int i, j;
for (i = 0; i < v->ndests; ++i) {
for (j = 0; j < nothers; ++j) {
if (strncmp(v->destnames + i * 4, others[j].name, 2) == 0) {
v->dests[i] = others + j;
break;
}
}
if (!v->dests[i])
fprintf(stderr, "Cannot find %2.2s for %s\n", v->destnames + i * 4, v->name);
}
}
#if 0
void
valve_distances_dump(struct valve const * valves, int nvalves, int * dists)
{
int i, j;
fprintf(stderr, " ");
for (i = 0; i < nvalves; ++i) {
fprintf(stderr, " %s", valves[i].name);
}
fprintf(stderr, "\n");
for (i = 0; i < nvalves; ++i) {
fprintf(stderr, " %s", valves[i].name);
for (j = 0; j < nvalves; ++j) {
fprintf(stderr, " %2d", dists[j + i * nvalves]);
}
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
#endif
// Precalculate distances between all pairs of valves
int *
valve_distances(struct valve * valves, int nvalves)
{
int * dists;
int i, j, n, more;
struct valve ** v;
if ((dists = malloc(nvalves * nvalves * sizeof(int))) == NULL)
return NULL;
// Initialise.
for (i = 0; i < nvalves; ++i) {
for (j = 0; j < nvalves; ++j) {
dists[j + i * nvalves] = (i == j) ? 0 : -1;
}
}
// Find successive distances
for (n = 0, more = 1; more == 1; ++n) {
more = 0;
for (i = 0; i < nvalves; ++i) {
// On each row.
for (j = 0; j < nvalves; ++j) {
// Look for valves that takes n steps to get to.
if (dists[j + i * nvalves] != n)
continue;
for (v = valves[j].dests; v < valves[j].dests + valves[j].ndests; ++v) {
if (dists[*v - valves + i * nvalves] != -1)
continue;
// Found a neighbor that we can't get to quicker
// so we can get to it in n + 1 steps
dists[(*v - valves) + i * nvalves] = n + 1;
more = 1;
}
}
}
}
return dists;
}
int
valve_distance(struct valve * valves, int nvalves, int * dists, struct valve const * a, struct valve const * b)
{
return dists[(a - valves) + nvalves * (b - valves)];
}
int
main(int argc, char ** argv)
{
int debug = 0, eruption = 30, plumbers = 1, i;
regex_t valvein;
regmatch_t rmvalve[4];
char buf[BUFSIZ];
struct valve * valves = NULL, * v, * start = NULL, ** path;
int nvalves = 0, nflows = 0, max = 0;
int * dists;
if (regcomp(&valvein, "Valve ([[:upper:]]{2}) has flow rate=([[:digit:]]+);"
" tunnels? leads? to valves? (([[:upper:]]{2}(, )?)+)", REG_EXTENDED) != 0)
{
fprintf(stderr, "Bad regex\n");
return -1;
}
while ((i = getopt(argc, argv, "dp:b:t:")) != -1) {
switch (i) {
case 'd':
debug = 1;
break;
case 'p':
switch (atoi(optarg)) {
case '1':
eruption = 30;
plumbers = 1;
break;
case 2:
eruption = 26;
plumbers = 2;
break;
default:
fprintf(stderr, "Unexpected part %s\n", optarg);
return -1;
}
break;
case 'b':
plumbers = atoi(optarg);
break;
case 't':
// 'time' is taken by time(3), hence 'eruption'
eruption = atoi(optarg);
break;
default:
regfree(&valvein);
return -1;
}
}
// Read in valve data
while (fgets(buf, sizeof(buf), stdin)
&& regexec(&valvein, buf, arrlen(rmvalve), rmvalve, 0) == 0)
{
void * p;
if ((p = realloc(valves, ++nvalves * sizeof(struct valve))) == NULL) {
fprintf(stderr, "Bad realloc(%zd)\n", nvalves * sizeof(struct valve));
free(valves);
return -1;
}
valves = p;
v = valves + nvalves - 1;
buf[rmvalve[1].rm_eo] = '\0';
buf[rmvalve[2].rm_eo] = '\0';
buf[rmvalve[3].rm_eo] = '\0';
valve_ctor(v, buf + rmvalve[1].rm_so,
atoi(buf + rmvalve[2].rm_so),
buf + rmvalve[3].rm_so);
}
// Set up valve dests
for (v = valves; v < valves + nvalves; ++v)
valve_setdests(v, valves, nvalves);
// Calculate distances between all valves
dists = valve_distances(valves, nvalves);
// Find start position
for (v = valves; v < valves + nvalves && !start; ++v) {
if (strcmp(v->name, "AA") == 0)
start = v;
}
if (!start) {
fprintf(stderr, "Unable to find start valve in %d valves\n", nvalves);
for (v = valves; v < valves + nvalves; ++v)
valve_dtor(v);
free(valves);
regfree(&valvein);
return -1;
}
// Create a path containing all the valves that can flow, which are
// reachable from the start position before the eruption
path = malloc(nvalves * sizeof(struct valve *));
for (v = valves; v < valves + nvalves; ++v) {
if (v->flow > 0 && valve_distance(valves, nvalves, dists, start, v) < eruption)
path[nflows++] = v;
}
// Go through all permutations of path to find max flow
qsort(path, nflows, sizeof(struct valve *), ptrcmp);
do {
int flow = 0, plumber = 0, minutes = eruption;
// Calculate the flow of this permutation.
for (i = 0; i < nflows && minutes > 0; ++i) {
// Subtract travel time, and time to turn valve on
minutes -= valve_distance(valves, nvalves, dists,
i == 0 ? start : path[i - 1], path[i]);
minutes -= 1;
if (minutes <= 0) {
// This plumber is out of time.
if (++plumber >= plumbers)
// Out of plumbers!
break;
minutes = eruption;
minutes -= valve_distance(valves, nvalves, dists, start, path[i]);
minutes -= 1;
}
// Add the amount of flow for being turned on for remaining minutes
flow += path[i]->flow * minutes;
}
// Is it a new high?
if (flow > max) {
if (debug) {
int j;
fprintf(stderr, "Found new max flow: %d: %s", max, start->name);
for (j = 0; j < nflows; ++j)
fprintf(stderr, "->%s", path[j]->name);
fprintf(stderr, "\n");
}
max = flow;
}
if (i < nflows) {
// We didn't get to the end of the path. We can skip all
// the permutations of all the remaining elements in the
// path, because they don't matter. Do this by sorting
// the remining elements in reverse, which is the last
// possible permutation, so that the qpermute() will
// pick the next path that is substantively different
// from this.
qsort(path + i + 1, nflows - (i + 1), sizeof(struct valve *), ptrcmpr);
}
} while (qpermute(path, nflows, sizeof(struct valve *), ptrcmp));
printf("Max flow: %d\n", max);
// Done.
free(path);
free(dists);
for (v = valves; v < valves + nvalves; ++v)
valve_dtor(v);
free(valves);
regfree(&valvein);
return 0;
}
|